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Abstract-The governing equations for momentum, energy and electric transport are solved numerically 
to obtain the unsteady development of an axially symmetric gas tungsten arc weld pool. The effects of 
Marangoni, Lorentz and buoyancy forces are included. The finite difference method is used to solve the 
equations and the grid is made to adapt to the shape of the melt front and to move with the front as 
melting occurs. In general, convection is found to decrease the energy losses from the weld pool by 
evaporation. This increases the size of the weld pool. Convection has a large effect on the depth of the 
weld pool but only a small effect on the width. The Lorentz force causes fluid motions which increase the 
depth of the weld pool. The effects of the Marangoni force depend on the sign of the surface tension 
temperature coefficient, yT. A negative value for y7 causes fluid motions which suppress the effects of the 
Lorentz force and result in a fairly shallow weld pool. A positive value for yT causes fluid motions which 

enhance the effects of the Lorentz force and result in a very deep weld pool. 

1. INTRODUCTION 

GAS TUNGSTEN arc welding (GTAW) is a form of 
fusion welding where an electric arc is applied to the 
surfaces of parts to be joined by melting and sol- 
idification. The arc transfers both energy and electrical 
current to the medium. The mechanisms which affect 

the shape of the time-dependent molten metal (weld 
pool) are the focus of this study. Most of the energy 
transferred from the arc is deposited on the surface of 
the metal. Energy losses from the surface occur mainly 
by radiation and evaporation [ 11. Heat transfer within 
the weld pool occurs by both convection and con- 
duction. The fluid motion is caused by forces resulting 
from buoyancy, electromagnetism and surface 
tension. Buoyancy results from the large temperature 
gradients created in the pool by the arc heating. The 
electromagnetic or Lorentz force results from the 
interaction of the electric current in the pool with the 
magnetic field induced by this current. The surface 
tension gradient on the weld pool free surface results 
from the gradient of the temperature at the surface. 
The objective of this work is to study the heat transfer 
and fluid motion in a GTA weld pool and, in particu- 
lar, the influence that convection has on the time- 

dependent shape of the weld pool. 

2. MODELING STUDIES 

Rosenthal [2] used moving point and line heat 
sources to simulate an arc traveling over a semi-infi- 
nite medium. Comparisons with experimental results 
for fusion zone shapes and temperatures were gen- 

erally poor due to the neglect of the finite arc heat flux 
distribution and convection in the weld pool [3, 43. 
Distributed heat fluxes have been used by Pavlik et d. 
[5], Friedman and Glickstein [6] and Mills [7]. The 
neglect of weld pool convection, however, continued 
to result in poor agreement with experiment for weld 
shapes. Atthey [8] studied the effects of Lorentz forces 
on fluid flow in weld pools. He solved the Navier- 
Stokes equations for a weld pool with a constant 
hemispherical shape. The arc was simulated by an 
axially symmetric Gaussian current distribution. 

Craine and Andrews [9] studied the effects of 
Lorentz forces on fluid motion and weld pool shapes 
in stainless steel. They solved the momentum and 
energy equations using the finite difference method 
with a body fitted grid to obtain steady axially sym- 
metric shapes of the molten pool. Their results showed 
that fluid motion due to the Lorentz force has a pro- 
nounced effect on the shape of the pool. A single 
vortex was obtained with flow downward along the 
axis of symmetry, which increased the depth of the 
pool. 

Oreper and Szekely [lo] used finite differences to 
solve the governing equations for energy and momen- 
tum transport in GTA weld pools to determine the 
shape of the melt front. They included the effects of 
buoyancy, Lorentz and Marangoni forces (the 
Marangoni force is due to a gradient in the surface 
tension). Later, Oreper and Szekely [ 1 l] studied the 
formation of weld pools in aluminum, stainless steel 
and titanium. They found convection to be more 
important in poor conductors (titanium and, stainless 
steel) than in a good conductor (aluminum). The 
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NOMENCLATURE 

A, area vector of control volume s magnetic force number, Bi/(p V&) 

face i St Stefan number, c,,(Tr- TO)/&, 
B magnetic field vector f time, distance measured at a tangent to 

RR scale for the magnetic field, polr,/(2nr2) surface 

(‘I’ specific heat T, fusion temperature 

CU capillary number, p VR/y u, c radial and axial velocity components, 
D,, R, pool depth at the axis of symmetry respectively 

and radius at the surface, respectively V velocity 

eu unit vector in the cylindrical coordinate Y rate of mass vaporization 

angular direction : axial coordinate. 

Gr Grashof number, gfiR’AT,/v’ 

h enthalpy Greek symbols 
H height of domain 7 surface tension 

I arc current Yr rate of change of surface tension with 

J electric current density vector temperature 

Jl Joule number, 2p,pc,,AT,/B~ E position vector of interface, emissivity 

k thermal conductivity p dynamic viscosity 

L radius of domain PO permeability of vacuum 

L, heat of fusion r> ? transformed coordinates 

LI-, heat of vaporization I3 electrical conductivity, Stefan- 

n distance measured normal to surface Boltzmann constant 
NU qRp/ATKkR, where q is the local heat flux r shear stress. 

P pressure 
P total arc power Subscripts and superscripts 
Pe Peclet number, pc,,R, V,/k 1, s liquid and solid sides of interface, 
R,, Rz orthogonal radii of curvature respectively 
r radial coordinate n normal component 

r, width of electrical flux distribution R reference quantity 

rq width of thermal flux distribution t tangential component 

Re Reynolds number, Rp VR/p cx) arc plasma 
RWl magnetic Reynolds number, VRpoRo * nondimensional quantities. 

effect of convection was also found to be more impor- 
tant in deep weld pools than in shallow pools. Maran- 
goni forces were found to have a strong effect on the 

circulation patterns. 
Kou and Sun [12] calculated weld pool shapes for 

aluminum where the effects of buoyancy, Lorentz and 
Marangoni forces were included separately. Their 
results indicated that the Marangoni force was the 
most important source of fluid motion. Their results 

did not show a wide range of weld shapes. Kou and 
Wang [ 131 solved the governing three-dimensional 

equations for the case of a weld pool with a steady 
travel speed. Their results, however, were computed 
on a 26 x 12 x 13 grid, which was probably too coarse 

to resolve the flow field in the pool. 
Chan et al. [14] considered fluid motion in a two- 

dimensional traveling laser weld pool, where heat and 
momentum transfer in the direction of travel were 
neglected. They considered a range of parameter 
values representative of aluminum, stainless steel and 
sodium nitrate. Their results showed that the aspect 
ratio (width/depth) of the pool first increased with the 
absolute value of yr (only negative values of or were 

considered) due to the radially outward flow caused 

by the Marangoni force. For larger values of ]yr], a 
secondary, counter rotating vortex formed which then 

resulted in a decrease of the aspect ratio with increas- 

ing IA. 
Fautrelle [ 151 included convection in calculations 

of stationary weld shapes and found that the Lorentz 
and Marangoni forces dominated in causing fluid 
motion. His results clearly showed the difficulty in 

resolving the flow field near the melt front with a 
rectangular finite difference grid. Zacharia et al. [16] 

solved the governing three-dimensional equations for 
a traveling weld pool in aluminum where the free 
surface was not constrained to be flat. They showed 
only one weld shape and appeared to use a coarse 
grid. 

Ramanan and Korpela [ 171 calculated steady weld 
pool shapes using a finite difference grid which had a 
large number of grid points and small grid point spac- 
ing. They noted that most of the previous studies used 
finite difference grids which did not resolve the thin 
momentum boundary layer. 

It is difficult to compare the results from the differ- 
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FIG. 1. A schematic showing the geometry of the problem to 
be solved. 

ent investigators due to the different values of the 
parameters used. This may explain the large variations 
which exist between the computed weld shapes 
reported by different investigators. In general, the 
depth of the weld pool was shown to strongly depend 
on the convective heat transfer while the pool width 
was shown to be rather insensitive to the convective 
heat transfer. Chan et al. [14], however, showed that 
the pool width strongly depended on the convective 
heat transfer. 

In the present work, axially symmetric weld pool 
shapes were studied. The process efficiency was not 
specified ; rather an evaporation model was used to 
account for energy losses from the weld pool surface 
which yields an estimate of the process efficiency. The 
process efficiency, i.e. the net energy transferred from 
the arc to the medium divided by the total energy 
expended in the arc, was specified in the previous 
studies. A moving finite difference grid was used in 
this work. Conventional grids are not very efficient 
because of the moving and complex shape of the phase 
boundary. The method used here makes efficient use 
of the grid points by making the grid conform to the 
shape of the melt front. 

The problem studied here, depicted in Fig. 1, is the 
formation of a spot weld using GTAW. A stationary 
arc is incident on a solid cylinder of diameter 2L 
and height H that is at a uniform temperature. The 
material is assumed to undergo a solid to liquid phase 
change at a single temperature. The current density 
and the heat flux distributions on the upper surface of 
the medium are specified boundary conditions using 
Gaussian distributions which fit experimental data 
[Ig]. Energy losses by radiation and metal vapor- 
ization are included. The finite difference method is 
used to solve Maxwell’s equations and the governing 
equations for unsteady mass, momentum and energy 
transport. The equations are transformed to allow the 
use of a non-orthogonal moving finite difference grid. 

3. FORMULATION OF THE BASIC 

EQUATIONS 

The conservation equations are scaled using the 
width of the thermal flux distribution, rg, for length, 

the quantities pVR/rq for pressure, c,,AT, for 
enthalpy and rq/VR for time. In addition, density, 
thermal conductivity, specific heat and viscosity are 
scaled with the representative values, pR, kR, cPR and 
pR, respectively. The reference scales for velocity and 
temperature are discussed below. The dimensionless 
equations are given by 

DP* 
Dt* +p*v**v* = 0 

av* 
Tp + (v* * v*)v* = - $pv*p* 

+ &(T*-T;)e,+2S(J*xB*) 

2 
- __ v*(p*v* * v*) + 

3Rep* 
$ [v*v* 

+V*(V**V*)]+ & (v*p* - v*)v* 

1 
+ - v*p* x (v* x v*) 

Rep* 

ap*h* 
dt* +V* * (V*p*h*) = k/E* -J* 

+ &‘*.k*V*T*. (3) 

The buoyancy term in equation (2) has been linearized 
with respect to temperature. 

Maxwell’s equations govern the distribution of the 
current density, J, the electric field, E, and the mag- 
netic field, B. These variables are scaled with the quan- 
tities Z/r:, I/r:a and Ip,,r,/2nr,& respectively. Here, the 
electrical conductivity, 6, is assumed constant. For 
typical values of the parameters for welding appli- 
cations, the magnetohydrodynamic (MHD) approxi- 
mations may be used. In addition, the magnetic field 
is assumed to be steady and the free charge density is 
assumed to be zero. The resultant form of Maxwell’s 
equations are [ 191 

V”xE* = 0, 27tV*xB* = J*. (4) 

Ohm’s law, J* = E*, completes the set of three equa- 
tions for the three unknowns, E, J and B. 

The axially symmetric current density creates 
a magnetic field which is solely in the azimuthal 
direction. B* is expressed in terms of Y*, 
B* = 2n(P*/r*)e,, where Y* was called an electro- 
magnetic stream function by Oreper and Szekely [lo]. 
The current density is expressed in terms of Y* as 

J*=V*xFe, (5) 

which yields 
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&g)+&(;g)=O. (6) 

3.1. The boundary conditions 
(i) The upper surface is exposed to the electric and 

thermal fluxes from the arc. The heat flux entering the 
medium is equal to the incident arc flux minus the heat 
losses. Heat is lost from the upper surface primarily by 
radiation and vaporization, Thus 

‘P*=i[r*exp(g)dr* 

(z* on the upper surface) (7) 

k*$ = ;$& [exp (- 3r*2) - Y*] 
q R R 

- 9 (T*4 - T2,4) (z* on the upper surface) 
R 

(8) 

where P, the total incident arc power, equals the 
product of the arc current, voltage and the factor 0.9 ; 
i.e. 10% is lost by direct radiation. Y, the rate of mass 
loss by evaporation, is calculated using the equation 
derived by Dushman and Lafferty based on kinetic 
theory (cf. Choi et al. [20]) which is of the form 
log Y = A -B/T- l/2 log T, T being the local surface 
temperature in Kelvin. For stainless steel, with Y in 
g cm-* ss’, Choi et al. [20] recommend A = 8.641 
and B = 18 732. Y is scaled with 3P/(nr~L,,). 

(ii) The temperature at the melt front is equal to 
the fusion temperature, Tf. The motion of the front is 
determined by the difference between the heat flux 
into the melt front on the liquid side and the heat flux 
away from the front on the solid side, cf. equation (9). 
Here, time is scaled by r:cP,pR/kR, and E is a position 
(or distance) vector which has a fixed but arbitrary 
reference point since only the change in E is important 

p* de* 
-- ~- = (k*V*T* - n*), - (k*V*T* en*), 
St dt* 

(r*, z* on the melt front). (9) 

(iii) A symmetry condition exists at the axis, r = 0 

y* = g = 0 (r* = 0). (10) 

(iv) The lower surface is insulated thermally and 
electrically 

Y’* = g = 0 (z* = 0). (11) 

(v) The side surface is adiabatic. The current leaves 
the domain on the side surface with a uniform dis- 
tribution 

aT* *2 r, 
---=o, Y*=2nH* 
&* 

----z* (r* = I,*). (12) 

(vi) The tangential and normal forces must balance 

at the free surface of the pool. The tangential forces 
result from the shear stress of the plasma above the 
surface, the shear stress of the liquid metal below the 
surface and the surface tension gradient on the free 
surface. The surface tension is approximated by the 
equation y = yR+yT(T- T,.), where yr is a constant. y 
is scaled by yrATR 

x ~- =-- + c (r*onfreesurface) (13) 
bLK Va;(He) dt* 

where n and t are the local normal and tangential 
coordinates to the free surface, the subscript co sig- 
nifies values corresponding to the arc plasma, 6 is the 
thickness of the Marangoni shear layer discussed later 
and z, is the shear stress exerted on the weld pool free 
surface by the arc plasma. A representative value of 
r, is taken from the study of McKelliget and Szekely 
[21]. The normal forces on the free surface are the 
pressure of the plasma, the pressure in the liquid metal 
and the normal component of surface tension due to 
curvature 

= Cam’ ( > &+fi 3 
z* on free surface. (14) 

I 2 

A representative value of pS is taken from the study by 
Fan et al. [22]. 

(vii) The tangential fluid velocity is zero at the melt 
front and the normal fluid velocity depends on the 
change in density due to melting 

Vf=O, y:=!g 1-h L ( > PI Pe’ 

(r*, z*) on melt front. (15) 

(vii) On the axis of symmetry the radial velocity 
and the radial gradient of the axial velocity are zero 

&I* 
-=u*=O (r*=O). 

&* 

3.2. The velocity and temperature scales 
The energy boundary condition, equation (S), leads 

to a relation for a temperature scale, AT,, with domi- 
nant terms representing the vaporization heat loss and 
the incident arc heat flux. Equating these two terms 
gives the evaporation limiting temperature ; sub- 
tracting T, from the result gives AT,; i.e. AT, rep- 
resents the temperature difference across the pool. 
Ostrach [23] derived the following velocity and thick- 
ness scales, V, and 6, for a shear layer driven by 
Marangoni forces which are appropriate for this 
study. The Marangoni velocity scale is used in the 
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Table 1. Thermal physical properties and arc parameters 
~___..._ I__~ 
Properties of stainless steel (see Leibowitz [24] for the dependence of p, cp and j on temperature) 

p = 6.56 g cmm3; 6 = 0.19 cat g-’ “C’; Tr = 14OWC ; L, = 65 cal g-’ ; L, = I754 caf gg’ ; 

k=0.030~3.86xl0~5Tcalcm~‘s~‘“C~‘,T~T,;k=0.031+5.7x10~6Tcalcm~’s~‘“C~‘,T~T,; 
~ = 0.0, x tO’238’!“K’-0.595”) gs-‘cm-‘,T~T,;~=1xlO~40C~‘;~,=_+O.Oldynecm~’”C~‘; 

o= 17894-6.5TG-‘cm-‘, T< T,.;cr =4976-1.2(T-T,)R-‘cm~‘, T> Z”! 

Arc parameters (typical values for a short arc length, e.g. 1 mm [is]) 

I= IOOA; V= 10.9V;r,=0.356cm;r,=0.326cm;~=0.9 
-~ _-._ -________..-_-I___-~_- 

evaluation of the dimensionless parameters. A vel- 
ocity scale based on a balance between the Lorentz 
force and the inertial force, VJXB, is also noted (cf. 
Oreper and Szekely [I I]) 

phase change is of the same order of magnitude as the 
change in sensible energy (St = 3.1). 

From equation (8) P/(rqATRkR) = 13 and r,ATzos/ 

k, = 0.01, showing that the conduction term and 
the radiation terms are small in comparison to the 
arc heat flux and evaporation terms. Equation 
(13) contains the dimensionless grouping, r,r,/ 
(pV,J(Re)), equal to 0.25. This indicates that the 
shear stress on the free surface caused by the flow 
of the arc plasma is small, but not negligible. However, 
it is neglected in the interest of simplification ; i.e. 
zmrq/(pVV,,/(Re)) is set to zero. The deflection of the 
free surface depends on the values of [from equation 
(14)] the capillary number, Ca, and the dimensionless 
groupings (pa,rq/pCR V,) and (z,rq/pR VR). The latter 
two quantities have values of 30 and 5, respectively. 
The value of Ca is 4 x 10F4, which indicates that the 
radius of curvature of the free surface is of the order 
of 100 cm. This rough analysis of the surface deflection 
indicates that surface deflections should be small so 
the free surface is assumed to be flat ((pmrq/pR V,), 

(~~r~/~~ V,) and Ca are all set to zero). However, 
more detailed studies of surface deflections are war- 
ranted. The values of the remaining parameters are 
L* = H* = 2.8 and r,*= 0.92. 

(17) 

VrX B has a linear dependence on the depth of the weld 
pool, D,. 

Based on the property values of stainless steel 304 
1241 and the arc parameters [ 181 shown in Table 1, 
ATR = 1049°C and VR = 9.7 cm SK’. The variation in 
density between room temperature and AT,+ Tf is 
21%. Of this, 4% is due to melting, i.e. p,/p, = 1.04. 
The effect of this density variation on weld pools 
should be studied. However, to simplify the equations 
the density is held constant (p = pR = 6.56 g cmm3, 
ps/pl = 1). An exception is made for the buoyancy 
term in the moments equation where the density is 
assumed to be a linear function of temperature. The 
specific heat is taken to be a single constant value over 
the liquid and solid domains. The thermal expansion 
coefficient, j3, is also taken to be constant. The vari- 
ations of the thermal conductivity and the viscosity 
with temperature are included. 4. THE METHOD OF SOLUTION 

A total of 15 parameters are identified in the govern- Figure 2 shows a diagram of the moving grid used 
ing equations (Re, Gr, S, Pe and RmJI) and the in this study with the meit front coinciding with 
boundary conditions (L*, H*, rz, P;orq/(pRV,& 9 = Q,,~,~ and the liquid domain defined by v > qmclt, 
w,/(p, Vd, Pl(r,AT,kd, rqAThlkR, St, Ca and Figure 3 shows the grid that was used. The grid points 
ps/p, (p,/p, was discussed above)). The value of the are distributed along straight lines of constant < 
magnetic force number S is 0.49, indicating that the extending from the upper left hand corner of the grid, 
Lorentz force is of the same order of magnitude as through the melt front and over to either the lower or 
the inertial force. The buoyancy force is smaller than right hand boundaries. A predetermined grid point 
the inertial force but not negligible (Gr/Re2 = 0.14). distribution along the straight lines is used, with a 
The viscous force is much smaller than the inertial smaller grid point spacing near the melt front. The 
force in the bulk of the flow (Red’ = 0.0022) ; spacing of the lines of constant 5 is also pre- 
however, the viscous force is dominant in the bound- determined. This spacing is made smaller near the free 
ary layers near the weid pool free surface and also surface of the pool. The grid point movement is due 
near the melt front. This can be demonstrated by solely to the movement of the melt front. The remain- 
resealing the viscous term in the momentum equation der of the grid is made to stretch with the motion of 
using the boundary layer thickness scale. Heat trans- the melt front preserving the relative spacing discussed 
fer by convection is more important than by con- above. The lines of constant < do not move during the 
duction in the bulk of the flow (Pe-’ = 0.01 I). Volu- calculation. Most of the calcuiations are carried out 
metric heating due to electrical power dissipation is using a moving grid which conforms to the shape of 
small [8/(Rm JI) = 0.0021] and is neglected (i.e. the weld pool. Prior to the occurrence of melting a 
Rm JI- ’ is set to zero). The energy associated with stationary grid is used. During this small time interval 
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(a) 

-.r 

(b) 

FIG. 2. A schematic of the finite difference grid as it appears in physical (a) and transformed space (b) 
The points labeled A-E in the (r,z) plane map into the corresponding points in the (<, r)) plane. 

(cm) 

FIG. 3. The finite difference grid as it appeared at the end of 
the calculation for the yr = 0.01 dyne cm-’ “C-’ case. 

the heat transfer is dominated by heat conduction. 
The conduction equation is solved using the apparent 
specific heat method to account for the heat of fusion. 
The calculation is stopped when the fusion tem- 
perature isotherm has propagated a small distance. A 
new grid is then constructed which conforms to the 
melt front and moves with it for the remainder of the 
calculation. It is on the moving grid that the equations 
of motion are solved to determine the flow field in the 
liquid domain for use in the advection terms in the 
energy transport equation. The amount of melting 
during the stationary grid calculation is restricted to 

be small. 
A transformation from cylindrical coordinates to 

generalized moving curvilinear coordinates was 
accomplished by first writing the equations in control 
volume form. This was done for three reasons : one, 
only first order derivatives appear in these equations 
which are easily transformed with a single application 
of the chain rule ; two, this approach leads directly to 
the conservative form of the transformed equations ; 
and three, the arc heat flux can be included in the 
energy equation for control volumes surrounding 
boundary nodes. This yields a more accurate rep- 
resentation of the heat flux boundary condition than 

the conventional method which uses a temperature 

difference between two grid points perpendicular to 
the surface. A detailed discussion of the trans- 
formation may be found in Kanouff [25]. Central 

finite difference expressions are used to approximate 
the spatial derivatives. Time integration is 

accomplished using a predictor-corrector method 
similar to the alternating direction implicit (ADI) 

method. The stream function and electromagnetic 
stream function equations are solved directly using 

LDU decomposition. The energy balance at the melt- 
ing front is solved explicitly. 

A 41 x 26 grid size was used where the portion of 
the grid dedicated to the liquid domains was 32 x 26 

and the portion of the grid dedicated to the solid 
domain was 9 x 26. In order to resolve the Marangoni 
shear layer, a minimum grid spacing of 0.0009 cm was 
used near the free surface. This small grid spacing 

required the use of a small time step in order to pre- 
serve stability. As a result, 24 h of CRAY YMP CPU 
time was required to calculate a weld pool cor- 
responding to 10 s of arc time. A comprehensive con- 

vergence study was carried out [25]. For most cases 
the effects of changes in grid spacing, time step and 
convergence tolerances were found to be less than 1% 
for the velocities and temperatures. At the melt front 

a 3% effect was found on the Nusselt number near 
the surface for yT = -0.01 dyne cm-’ “C-‘. For the 
yr = 0.01 case, a 2% effect on the Nusselt number was 
found near the axis of symmetry for small time which 
grew to 10% for large time. 

5. PRESENTATION AND DISCUSSION OF THE 

RESULTS 

The results for the formation of axially symmetric 
weld pools are presented. The values of the parameters 
noted at the end of Section 2 were used. Note that the 
negative value of yT corresponds to a pure material 
whose surface tension has a maximum value at the 
fusion temperature and decreases monotonically to 
zero as the critical temperature is reached. The posi- 
tive value corresponds to a material with impurities 
such as sulfur present. Sulfur concentrations as small 
as 50 p.p.m. cause the surface tension of iron to increase 
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(b) 
0.0e 

I I I I 
-0.40 -0.20 0.00 0.20 

FIG. 4. The shape of the weld pool (right) and the temperature distribution (left, shown in 100°C contour 
intervals) in the vicinity of the pool for pure conduction : (a) t = 0.25 s; (b) t = 10 s. 

::: 
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 

Distance Along Melting Front - cm 

FIG. 5. Pure conduction results for the variation of the heat 
flux along the liquid side of the melt front normalized by 

k,AT,/R,, where R, is the radius of the pool. 

with temperature over a large temperature range [26, 
271. Heiple and Roper [28] showed that the depth to 
width ratio of welds increased dramatically due to 
small amounts of sulfur. 

Figure 4(a) shows the shape of the weld pool and 
the temperature distribution obtained from the con- 
duction formulation. The location of the melt front 
corresponding to t = 0.25 s (with arc initiation at 
t = 0 s) can be seen on the right side of Fig. 4(a). 
The subsequent calculations are all carried out with a 
moving grid tracking the melt front. To provide a 
comparison for the calculations including the effects 
of convection, a pure conduction calculation (Pe = 0) 
was carried out. Figure 4(b) shows the result from 
this conduction calculation for the weld shape and 
temperature field at a weld time of 10 s. Figure 5 
shows the distribution of the heat flux along the liquid 
side of the melt front. The heat flux increases with 
distance measured along the melt front, starting from 
the bottom center of the pool, and decreases at all 
locations on the front with respect to time. 

The following results are from calculations which 
included the effects of convection as determined from 
the full solution of the unsteady equations of motion 
for or = -0.01 dyne cm -’ “C-‘. Figure 6 shows the 
stream function and temperature fields at 0.5, 2 and 
10 s. The vortex on the right in Fig. 6(a), filling most 
of the pool, is driven by the Marangoni force. Surface 
tension, in this case, is larger at the colder pool per- 
imeter than at the hot center of the free surface. The 
net force acts to pull the fluid on the free surface 
radially outward causing the vortex, shown in Fig. 
6(a), to rotate in the clockwise direction. A counter 
clockwise rotating vortex driven by the Lorentz force 
is located near the axis, Y = 0, although it is weak and 
does not appear in Fig. 6(a). As the weld pool gets 
wider with time the Marangoni vortex (next to the 
surface) moves out along the free surface staying near 
the pool perimeter. This permits the Lorentz vortex 
(next to the axis, r = 0) to increase in size and strength, 
although the Marangoni vortex appears to restrict the 
Lorentz vortex to the lower portion of the pool. 

Figure 7 shows the radial component of velocity 
along the free surface at t = 10 s. The maximum vel- 
ocity is located near the outer perimeter where the 
maximum surface tension gradient is located. Also 
shown in Fig. 7 is the axial component of velocity as 
a function of depth along the axis (r = 0). The velocity 
is initially quite small and remains much smaller than 
the radial component of velocity on the free surface. 

The Nusselt number, Nu, along the melt front 
(liquid side) is shown in Fig. 8. At 0.5 s the Nu dis- 
tribution appears similar to the conduction result 
(Fig. 5) except near the free surface. The maximum 
value of the Nusselt number is not located at the free 
surface ; instead, it is located just below the surface. 
This is apparently due to the large outward radial 
velocities near this point which turn downward near 
the outer edge of the pool. Note that the value of Nu 
at the surface remains larger than the pure conduction 
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FIG. 6. The shape of the weld pool and the stream lines (right, shown in increments of 0.003 cm’ s-‘) and 
the temperature distribution (left, shown in 100°C contour intervals) in the vicinity of the pool for 

~r=-O.O1dynecm-‘“C~‘:(a)t=O.5s;(b)f=2s;(c)t=10~. 
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FIG. 7. The variations of the radial component of velocity . ._ 
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along the axis of symmetry for the yr = -0.01 dyne cm-’ 

FIG. 8. The variation of the Nusselt number along the liquid 

“C ’ case. 
side of the melt front for the yr = -0.01 dyne cm- ’ 

“C- ’ case. 
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40 6.0 

Time - set 

FIG. 9. The maximum fluid velocities on the free surface 
(radial component) and on the axis of symmetry (axial com- 
ponent) for the yr= -0.01 dyne cm-’ “C-’ case. The 
Marangoni and Lorentz velocity scales are shown for com- 

parison. 

result; that is, the effect of convection in this case is 
to increase i?u at all points on the melt front. As time 
progresses a local maximum develops at the axis due 
to the increasing strength of the Lorentz vortex. 

The maximum values of the velocity on the free 
surface (radial component) and the axis (axial com- 
ponent), are shown in Fig. 9 as a function of time. 
Also shown are the ~arangoni and Lorentz velocity 
scales (equations (17)) based on the temperature scale 
(evaporation limit) and on the computed, time-depen- 
dent values of the pool depth and radius [rq in equa- 
tions (17) is replaced with R,, the radius of the pool 
at the surface]. The correlation between the computed 
results and the scales is good. The magnitude of the 
Marangoni velocity scale is close to the maximum 
velocity on the surface and both the scale and the 
computed result decrease as the width of the pool 
increases. Although the magnitude of the Lorentz 
scale is approximately twice the value of the maximum 
velocity on the axis of symmetry, the computed result 
is approximately linear with the depth of the pool, as 
predicted by the Lorentz scale. The good correlation 
shown in Fig. 9 indicates that the unsteady term in 
the momentum equation is small (except for small 
time) since there is no time dependence in equations 
(17). Thus, the flow field is quasi-steady, i.e. a function 
of weld shape only. Figure 9 shows that the velocity 
quickly attains the quasi-steady value (~0.1 s). 

Calculations were also carried out for a positive 
value of Yr, 0.01 dyne cm-’ “C-’ (cf. Fig. 10). In this 
case the Marangoni force drives the free surface fluid 
radially inward. Recall that the Lorentz force also 
drives fluid near the free surface radially inward. Thus, 
both forces drive a single strong and deep vortex rotat- 
ing in the counter clockwise direction in Fig. 10, which 
convects heat downward along the axis, r = 0. This 
results in a large heat flux at the bottom of the weld 
pool (cf. Fig. 12) and a deep weld pool results. 

Figure 11 shows the inward (negative) radial vel- 
ocity distribution along the free surface and the axial 
velocity distribution along the axis, T = 0, at t = 10 s. 

The velocities are much larger than for the yr = -0.01 
case due to the downward in&x of momentum from 
both the Marangoni and Lorentz forces. (For 
yr = -0.01 the Marangoni and Lorentz forces 
oppose one another which results in two separate, 
weaker vortices.) In contrast to the or = -0.01 case, 
the velocity distribution is not symmetrical ; rather, 
the maximum value is located near the free surface. 

The Nusselt number dist~bution along the melt 
front, shown in Fig. 12, has a maximum value at 
the axis of symmetry due to the strong downward 
convection at r = 0. Figure 13 shows the maximum 
velocities on the free surface and along the axis, r = 0. 
The characteristic velocity scales given by equations 
(I 7) (with rs replaced by &, the radius of the pool at 
the surface) are also shown. The maximum computed 
velocities are nearly equal and are also much larger 
than the two respective scales. This is because the 
scalings from the Marangoni and Lorentz forces are 
for independent and separate vortices. 

The variation of pool depth as a function of time is 
shown in Fig. 14(a) for the pure conduction case as 
well as the two convection cases, yr = fO.O1. The 
variation of the weld pool radius at the free surface 
(i.e. the half width of the pool) is shown in Fig. 14(b). 
The pool radius appears to be only a weak function 
of weld pool convection. 

The results for the maximum temperature are 
shown in Fig. 15. In all cases, a rapid initial increase 
occurs due to the rapid growth in pool size which 
reduces the heat transfer into the weld pool by increas- 
ing the distance between the center of the free surface 
and the cooler melt front. As the pool grows larger the 
maximum temperature appears to approach a steady 
value near the evaporation limit, 2449°C. The results 
indicate evaporation is a major factor in determining 
the maximum temperature. Measurements of tem- 
peratures on the free surface of weld pools have been 
made by several investigators. Giedt et al. [29] used a 
pyrometer to measure the temperature at the center 
of a weld pool free surface immediately after turning 
off the arc. They estimated values between 1750 and 
2000°C. Kraus [30] measured values between 1725 
and 2525°C. The results obtained in this study 
strongly depend on the evaporation heat loss as deter- 
mined from a the~odynami~ model, which should 
probably be adjusted depending on the impurities 
being considered. The presence of impurities may be 
responsible for the wide range of results obtained from 
weld pool surface temperature measurements. 

Figure 16 shows the process efficiency, defined as 
the ratio of the power entering the medium to the total 
arc power. (The total arc power is given by the product 
of the arc current and voltage. A radiation loss from 
the arc plasma results in only 90% of the arc power 
being incident on the surface.) For all cases the 
efficiency is initially high, near unity, but at 10 s it has 
decreased to 72% for yr = 0.01, 58% for yT = -0.01 
and to 53% for pure conduction, These results are 
consistent with the measurements by Ghent et al. [31], 
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(b) 

-0.40 -0.20 0.00 0.20 a. 40 

FIG. 10. The shape of the weld pool and the stream lines (right, shown in increments of 0.003 cm’ s-‘) and 
the temperature distribution (left, shown in 100°C contour intervals) in the vicinity of the pool for the 

)jr = +O.Ol dyne cm -‘“C’case:(a)t=0.5s;(b)1=2s;(c)r=lOs. 

-20.0 II 
0.0 0.1 0.2 0.3 0.4 0.6 

distance 

FIG. 11. The variation of the velocity (radial component) 
along the free surface and the velocity (axial component) 
along the axis of symmetry for the yr = +O.Ol dyne cm-’ 

“C’ case. 

‘~6 

FIG. 12. The variation of the Nusselt number along the liquid 
side of the melt front for the yT = +O.Ol dyne cm-’ “C-’ 

case. 
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FIG. 15. The maximum temperature in the weld pool as a 
function of time for pure conduction and for two convection 

cases. yT = +O.Ol dyne cm-’ “C’. 

parison. 
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FIG. 14. The depth (a) and radius (b) of the weld pool as a 
function of time for pure conduction and for two convection 

cases, yr = kO.01 dyne cm-’ ‘C-‘. 

who reported efficiencies in the range of 60-80%. The 
results presented in Fig. 16 show that the effect of fluid 
motion is to reduce evaporation losses, regardless of 
the sign of yr. 

6. SUMMARY AND CONCLUSIONS 

The governing equations for unsteady axially sym- 
metric conditions were solved to obtain the shape of 
the weld pool as a function of time. Included in the 

2300.0- ’ 
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1.0 

FIG. 16. The arc efficiency (defined as the ratio of the power 
entering the medium to the total arc power) as a function 
of time for pure conduction and for two convection cases, 

yr = kO.01 dyne cm-’ “C-‘. 

study were the effects of Marangoni forces, Lorentz 
forces, buoyancy, phase change and energy losses by 
evaporation and radiation. Maxwell’s equations were 
solved to obtain the electric and magnetic fields. Cal- 
culations were made for three cases : pure conduction 
and convection with negative and positive yr. In all 
cases evaporation was a major energy loss mechanism 
which had a large effect on the maximum temperature. 
Convection decreased the evaporative energy losses 
and hence increased the size of the weld pool, regard- 
less of the sign of yr. Convection significantly 
increased the depth of the weld pool but had only a 
small effect on the width. 

The flow field for negative yT consisted of two vor- 
tices, one near the free surface of the pool driven 
by Marangoni forces and the other near the axis of 
symmetry driven by Lorentz forces. For this case, the 
Marangoni vortex convects heat to the outer per- 
imeter of the pool which increases its width. The 
Lorentz vortex convects heat to the bottom of the pool 
which increases its depth. The flow field for positive yT 
consisted of a single, rapidly rotating vortex driven by 
both the Marangoni and Lorentz forces. This vortex 
convects heat to the bottom of the pool at a much 
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greater rate than does the Lorentz vortex for negative 
yr, which results in a much deeper pool. 

The results for the maximum temperature in the 
weld pool approximately correlated with an energy 
balance between the maximum incident heat flux and 
evaporation. This indicated that a large amount of 
the energy incident at the center of the pool was lost 
by evaporation. The results for the efficiency were in 
the same range as published experimental data. 
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DEVELOPPEMENT TEMPOREL DU BAIN FONDU GTA 

Rbum&-Les equations de transfert de la quantite de mouvement, de l’tnergie et de l’electricitt sont 
resolues numeriquement pour obtenir le dtveloppement temporel dun bain de soudure a arc de Tungstene 
(GTA) symetriquement axial. On inclut les effets de Marangoni, de Lorentz et des forces de flottement. La 
methode des differences finies est utilisee pour les equations et la grille s’adapte a la forme et au d&placement 
du front de fusion. En general, la convection diminue les pertes d’bnergie par evaporation sur le bain. Cela 
augmente la taille du bain fondu. La convection a un grand effet sur la profondeur du bain mais settlement 
un effet faible sur sa largeur. La force de Lorentz provoque des mouvements du fluide qui augmentent la 
profondeur du bain. Les effets de la force de Marangoni dependent du signe du coefficient de temperature 
de la tension superticielle yr. Une valeur negative de y,provoque des mouvements du fluide qui suppriment 
les effets de la force de Lorentz et cela conduit a une profondeur convenable du bain. Une valeur positive 

de yr augmente les effets de la force de Lorentz et il en resulte un bain fondu tres profond. 
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DIE INSTATIONARE AUSBILDUNG EINES GTA-SCHMELZBADES 

Znsammenfassung-Die Erhaltungssltze fiir Impuls-, Energie- und Elektrizitltstransport werden numer- 
isch gel&, urn die instationare Ausbildung eines achsensymmetrischen Schmelzbades bei der Gas-Wol- 
fram-LichtbogenschweiDung (GTA) zu ermitteln. Dabei werden die Einflilsse der Marangoni-, der Lorentz- 
und der Auftriebskrlfte beriicksichtigt. Die Gleichungen werden mit einem Finite-Differenzen-Verfahren 
gel&, wobei das Gitter an die Form der Schmelzfront angepaBt wird und sich mit der Front bewegt. Im 
allgemeinen zeigt sich, daB die Konvektion den Energieverlust des Schmelzbades durch Verdampfung 
verkleinert, wodurch das Schmelzbad gri%er wird. Die Konvektion hat einen grogen EinfluB auf die 
Tiefe des Schmelzbades, jedoch einen nur geringen EinfluD auf dessen Breite. Die Lorentz-Kraft bewirkt 
Fluidbewegungen, welche die Tiefe des Schmelzbades vergrollern. Die Auswirkungen der Marangoni-Kraft 
hangen vom Vorzeichen des Temperaturkoeffizienten der Oberfllchenspannung yr ab. Ein negativer Wert 
von yr bewirkt Fluidbewegungen, welche den EinfluB der Lorentz-Kraft unterdriicken, und erzeugt ein 
viillig flaches Schmelzbad. Ein positiver Wert von yr bewirkt Fluidbewegungen, welche die Einfliisse der 

Lorentz-Kraft verstlrken, was zu einem sehr tiefen Schmelzbad fiihrt. 

HECTAHHOHAPHOE TIOBEAEHME OBBEMA PACHJIABA TIPH BOJILQPAMOBO~ 
flYI-OBOR CBAPKE 

Anuarm II~JU.K) nccne~onanma necrauaorrapnoro noaenerum ocecn~~erpmmoro o6wMa pacn- 
nana npH BOAbcppaMOBOi WOBOfi ceapne pHcAeHH0 ~IIWOTCK OnpeAeJmoIIJJie ypaBHeHHn IlepeHoca 

HMnyJTbC% 3Hepm H 3JIeKTpE¶ecKoro 3apKAa. YwTbmmTCR 3#eKTbl MapaHroHH, nOpema H 

~OAWMibIKCZiJI.&IK ~IUeHESl ypaBHe.Hd HCllOJ-MyeTCK KOHeVHO-pZUHocTHL.di MeTOACCeTKOfi, aAaIl- 

THpOBaHHOfi K CpoTphfe @poHTa pacmraea A murr+rymeficn nhfecre c rim4 B npo~ecce n.naB.meHHn. 

Ha&eHo,q~o KOHLRZ.H~IIUI -CT IlOTepB SHeprHH B o6aehcepaCnnaBa3acwr EC~~~pelllls,¶TO IIpEBO- 

AEiT K yBeJm¶eHmo o6beMa. Konnerr.pra cymec~m~~o ruuiler Ha ry6any pacmaea H JIHID He3Hawme- 

mH0 - HaerO IIIIfpmiy.Cmanope~a a~3~saeTaeaXeHAeYanrt~,ro~opoeyeen~eaeT my6HHy 

pacIIAaBa.3&#NXThICWbl Maparrrorm 3a~~c~~o~3HaKaTehmepa~yp~oroKo31#@iq~eHTano~epx~o~~- 

Hero HaTRXeHHP y*. &pHIIaTWIbHOe 3HaXeHHe Yr BbI3bIBaeT ABHXeHEe XEAKOCTH, IlO~BJlIlE0~e-e 

*KT~I~HJMJI~~~HIJ~ ~npm~~xxuee K o6pa30eamno A~K.~A~Ho rmmcoro pacnnaBa.llono~em- 

Hoe 3Ha¶eHHe yT o6yc~ro~umnaer nmixceriue IK~WZXTE, y~e~~vmwou@e 3+&mb1 cmm JIopeena H 
IIpHBOAKIIW K o6pa3osamno oXeHbrAy6oKoropacIIJIaBa. 


